Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Food ; 5(4): 301-311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38605129

ABSTRACT

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems. We characterized Hg methylating microorganisms from 67 cropland ecosystems across 3,600 latitudinal kilometres. The simulations of a rice-paddy biogeochemical model show that MeHg accumulation in rice is 1.3-1.7-fold more sensitive to changes in the relative abundance of Geobacteraceae compared to Hg input, which is recognized as the primary parameter in controlling MeHg exposure. These findings open up a window to predict MeHg formation and accumulation in human food webs, enabling more efficient mitigation of risks to human health through regulations of key soil microbiomes.


Subject(s)
Methylmercury Compounds , Oryza , Soil Microbiology , Soil Pollutants , Bioaccumulation , Methylmercury Compounds/metabolism , Methylmercury Compounds/analysis , Microbiota/drug effects , Oryza/metabolism , Oryza/chemistry , Oryza/microbiology , Soil/chemistry , Soil Pollutants/metabolism , Soil Pollutants/analysis
2.
J Hazard Mater ; 452: 131337, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37023572

ABSTRACT

Increasing evidence has revealed the lipid-disrupting effects of organic contaminants on aquatic organisms, raising attention about the efficacy of fatty acids (FAs) as bioindicator of contaminant exposure on marine organisms. Here, we investigated the concentrations of 55 organohalogen contaminants (OHCs), 35 FAs, and their correlations in 15 marine fish species (n = 274) from the estuary outlets of the west four region (WFR) and Lingdingyang (LDY) waters in the Pearl River Estuary (PRE), respectively. Despite the similar OHC profiles, significantly higher concentrations of ∑55OHCs were detected in fish from the LDY than those in the WFR. However, FAs in the LDY fish generally contained lower proportions of polyunsaturated fatty acids than in the WFR fish. A total of 148 and 221 significant correlations between OHCs and FAs were observed in fish samples from the LDY and WFR, respectively, supporting that FAs could be efficient bioindicators of OHC stress in marine fish. However, the low overlaps (14/369) of OHC-FA correlations in fish from the two regions suggested that the bioindicators of OHCs might have spatial heterogeneity. Our results highlighted that FAs likely act as potential bioindicators of OHCs in marine fish, while the regional-specific characteristic of the bioindicators should be considered.


Subject(s)
Environmental Biomarkers , Water Pollutants, Chemical , Animals , Fatty Acids , Estuaries , Fishes , Aquatic Organisms , Environmental Monitoring , Water Pollutants, Chemical/analysis
3.
Integr Zool ; 18(1): 183-198, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35279952

ABSTRACT

Accurate diet identification of top predators is crucial to fully understand their ecological roles. Compared to terrestrial animals, gathering dietary information from cetaceans is notoriously difficult. Here, we applied a multilocus metabarcoding approach to investigate the diet of vulnerable Indo-Pacific humpback dolphins and Indo-Pacific finless porpoises from the Pearl River Estuary (PRE), China. Our analyses identified 21 prey fish species from the 42 humpback dolphin stomachs, as well as 10 species of fish and 1 species of cephalopod from the 13 finless porpoise stomachs. All of the taxa were assigned to the species level, highlighting that the multimarker approach could facilitate species identification. Most of the prey species were small- and medium-sized fishes that primarily fed on zooplankton. The calculated similarity index revealed a moderated dietary overlap between the 2 cetaceans, presumably due to the feeding of the 2 predators in association with fishing vessels in the PRE. A more diverse diet was observed in humpback dolphins in the closed fishing season compared to the fishing season, implying the influence on the dolphin diet due to the availability of commercial fishery resources. However, according to the results of species rarefaction curves, our findings on the feeding habits of the 2 cetaceans are still limited by insufficient sample size and therefore should be interpreted with caution. This study represents a first attempt to apply the multilocus DNA metabarcoding technique in the diet analysis of small cetaceans, although more efforts are needed to improve this type of analysis.


Subject(s)
Dolphins , Porpoises , Water Pollutants, Chemical , Animals , Dolphins/genetics , Porpoises/genetics , Rivers , Estuaries , DNA Barcoding, Taxonomic , Water Pollutants, Chemical/analysis , China , Diet/veterinary
4.
Environ Sci Technol ; 56(18): 13046-13057, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36031938

ABSTRACT

Marine mammals often accumulate high levels of environmental contaminants, even those that are globally regulated regarding usage, raising concerns about their health status. Here, we conducted the first investigation of tissue distribution, spatiotemporal trends, and potential risks of six organotin compounds (OTs) in Indo-Pacific humpback dolphins (n = 101) from the northern South China Sea during 2003-2021. We detected the highest level of hepatic triphenyltin in these humpback dolphins compared with the results reported in cetaceans globally, and the liver accumulated the highest OT concentrations than other analyzed tissues. Despite the downward trend of butyltins in humpback dolphins after the global ban on the use of OTs as antifouling paints, levels of phenyltins have continued to increase over the past 20 years, suggesting that the other applications of phenyltins in South China remain prevalent. In vitro and in vivo analyses revealed that tissue-relevant doses of OTs could induce agonistic effects on the dolphin peroxisome proliferator-activated receptor γ as a master regulator of lipid homeostasis and altered the dolphin fatty acid profiles. Our results highlight the lipid-disrupting effects of current OT exposure in humpback dolphins and emphasize the need for further efforts to eliminate OT contamination in South China.


Subject(s)
Dolphins , Organotin Compounds , Water Pollutants, Chemical , Animals , China , Estuaries , Fatty Acids , Lipids , Organotin Compounds/analysis , PPAR gamma , Rivers , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 56(15): 10764-10774, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35861411

ABSTRACT

Bisphenol analogues (BPs) are ubiquitous pollutants to marine organisms as endocrine disruptive chemicals. However, the residue contamination and the trophic transfer of BPs in the apex predator nearshore dolphins are poorly studied. Here, we measured the concentrations of six BPs, including bisphenol A (BPA), bisphenol AF (BPAF), bisphenol B (BPB), bisphenol F (BPF), bisphenol P (BPP), and bisphenol S (BPS) in the liver of Indo-Pacific humpback dolphin (Sousa chinensis) (n = 75) collected from the Pearl River Estuary during a period with significant dietary changes (2004-2020). BPA and BPAF were the dominant components of the residue ∑BPs in the liver, with a proportion of 80%. Sex, maturity, and stranding location had no significant effects on BP levels. The generalized additive models indicated that BPA levels in juveniles and adults decreased from 2004 to 2013 while increasing from 2013 to 2020. The temporal trend of BPA levels was likely driven by the shift of the dominant diet from Harpadon nehereus to Thryssa spp. The concurrent increase of BPA loads in calves and juveniles and adults over the recent decades suggested that the diet-mediated variations of maternal BPA levels could be redistributed to their offspring.


Subject(s)
Dolphins , Animals , Benzhydryl Compounds , China , Diet , Estuaries , Phenols , Rivers
6.
Environ Pollut ; 307: 119526, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35623568

ABSTRACT

With the dramatic increase in anthropogenic threats to the Pearl River Estuary (PRE), the population size of the Indo-Pacific humpback dolphins (Sousa chinensis) has significantly decreased over the past decade. To understand the impact and potential risks of intense human activities on these dolphins, factors related to the mortality of humpback dolphins in the PRE were investigated by a detailed examination of 343 dolphin specimens stranded during 2003-2017. There was a significant (p < 0.01) increasing trend for humpback dolphin stranding, reflecting the accelerating rate of the population decline. A large proportion of strandings (35.88%) were neonates. A low recruitment rate implies slow population growth, and hence, limited capacity to resist anthropogenic stress. The most commonly diagnosed causes of death were vessel collision and net entanglement. The concentrations of trace metals, polychlorinated biphenyl (PCB) congeners, dichlorodiphenyltrichloroethane, polycyclic aromatic hydrocarbons, and most of per- and polyfluoroalkyl substances (PFASs) in the dolphin samples were greater than those previously reported in cetaceans globally. Furthermore, Cu, PCB77, PCB169, PCB81, PCB37, and PFASs (excluding PFBA, PFPeA, PFHxA, PFHxDA, and PFODA) were the major pollutants accumulated in neonates. 67% of PCB, 78% of Cu, and 100% of perfluorooctane sulfonate concentrations in the neonates exceeded the threshold for toxicological effects in marine mammals, suggesting that these compounds could be important factors contributing to the low survival rate of calves in this area. This study revealed that vessel transportation, fishing activities, and pollutant bioaccumulation are the three major causes of humpback dolphin mortality in the PRE. These results highlight the need for more efforts to restrict anthropogenic activities, especially vessel traffic, the catching of these marine animals and fishing, and pollutant discharge, in order to prevent vulnerable species from continuous population decline and further extinction.


Subject(s)
Dolphins , Environmental Pollutants , Fluorocarbons , Animals , China , Estuaries , Rivers
7.
Adv Appl Microbiol ; 118: 31-90, 2022.
Article in English | MEDLINE | ID: mdl-35461663

ABSTRACT

Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.


Subject(s)
Mercury , Methylmercury Compounds , Humans , Methylation , Phylogeny
8.
Environ Sci Technol ; 56(8): 5037-5048, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35394783

ABSTRACT

Increasing human activities are altering marine ecosystems, which may have ramifications for predator feeding ecology and, thus, the degree of contaminant exposure. We conducted the first investigation of spatiotemporal trends for nine alternative halogenated flame retardants (AHFRs) and their relations with dietary variations in 128 humpback dolphins that were stranded along the northern South China Sea during 2003-2020. We detected the highest levels of seven major AHFRs in humpback dolphins compared with the results reported in cetaceans globally, indicating high AHFR contamination in coastal regions of South China. Dolphins that were stranded near urban regions generally contained higher AHFR concentrations than those that were stranded near rural areas, mirroring the environmental trends of AHFRs occurring in this area. Model-generated diet estimates suggested that humpback dolphins have reduced their consumption of high trophic-level prey in recent years, likely attributable to overfishing-induced prey decline in this region. After adjusting AHFR concentrations due to diet changes, the temporal trends of AHFR contamination in humpback dolphins were only slightly altered. Our results suggest that increasing discharges of AHFRs into the South China Sea during the 2000s and 2010s may have had a greater influence on AHFR trends in humpback dolphins than dietary shifts.


Subject(s)
Dolphins , Flame Retardants , Water Pollutants, Chemical , Animals , China , Conservation of Natural Resources , Ecosystem , Fisheries , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 800: 149512, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34391148

ABSTRACT

Polychlorinated biphenyls (PCBs), as a type of legacy persistent organic pollutants, pose significant health threats to wildlife. However, long-term residue changes and profiles of PCBs in cetaceans have not been extensively studied in the Pearl River Estuary (PRE), an important marine mammal area in China. Here, the body burdens, spatiotemporal trends, and health risks of 21 chlorobiphenyl congeners (∑21CBs) were analyzed in blubber samples collected from twelve cetacean species (n = 172) in the PRE from 2003 to 2020. Our results revealed medium levels of PCBs (316-96,233 ng g-1 lipid) compared to those reported for cetaceans elsewhere (70-370,000 ng g-1 lipid). Clear differences in PCB distribution patterns between inshore and offshore cetaceans and between odontocetes and mysticetes were also found. Both the coastal Indo-Pacific humpback dolphins (Sousa chinensis) and Indo-Pacific finless porpoises (Neophocaena phocaenoides) displayed similarly fine-scale spatial distribution patterns of PCBs, suggesting that the two cetaceans could serve as bioindicators of PCB pollution in the PRE. Additionally, both cetaceans exhibited decreasing trends in their blubber PCB concentrations over the past 20 years, likely reflecting the effective regulation of PCBs in the PRE Delta. Nevertheless, the relatively high and stable PCB-toxic equivalent (TEQ) levels detected in calf humpback dolphins during the sampling period suggested that the calves are still under the stresses of high PCB-related health risks. Our results highlight the need for more efforts to eliminate PCB contamination to prevent these cetaceans from continuous population decline and further extinction.


Subject(s)
Dolphins , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Estuaries , Polychlorinated Biphenyls/analysis , Rivers , Water Pollutants, Chemical/analysis
10.
Environ Pollut ; 286: 117544, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34119862

ABSTRACT

While polychlorinated biphenyl (PCB)-related risks have been reported at the cellular, organ, and individual levels in some marine mammals, studies quantifying the PCB-associated population-level effects are limited. Here, we combined chemical analysis and individual-based model simulation to investigate the impact of PCBs on the Indo-Pacific humpback dolphin (sub)population from the Pearl River Estuary (PRE). An annual PCB accumulation rate of 0.29 ± 0.07 mg/kg lipid per year was estimated based on the measured age-specific male data as males continue to accumulate PCBs throughout their lifetime, without depurating contaminant loads. Using the Taiwan Strait dolphin population with low PCBs as a baseline, we compare our model simulations in PRE population to estimate relative population impacts of PCBs and other stressors. When using the current vital rates of the PRE dolphins which have been affected by PCBs and other stressors (e.g., underwater noise, prey limitation, etc.), our simulations revealed a substantial decline (8.1%) in the annual population growth rate (λ) of PRE metapopulation compared to baseline over the next 100 years. At the estimated PCB accumulation rate, the PCB-mediated effects on calf survival and immunity would cause a slight decline (0.9%) in λ relative to baseline. Our findings suggest a relatively limited impact of PCBs on the long-term survival of PRE dolphins among all stressors. However, it should be noted that even under model simulations where dietary PCBs were eliminated, humpback dolphins would still need a long time to reduce their PCB burdens to a relatively "safe" level through biological cycling. Considering that the baseline vital rates might also have been affected by PCBs and other stressors, our results are considered relative rather than absolute. This study provides a starting point for quantifying population-level consequences of contaminant exposure on humpback dolphins, although more efforts are needed to perfect this type of analysis.


Subject(s)
Dolphins , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Ecosystem , Estuaries , Male , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Sci Total Environ ; 785: 147287, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33933771

ABSTRACT

The placental transfer and congener composition of organic contaminants (OCs) in Indo-Pacific humpback dolphins have been little studied. In the present study, 16 polycyclic aromatic hydrocarbons (PAHs), 18 organochlorine pesticides (OCPs), and 28 polychlorinated biphenyl (PCB) congeners were analyzed in muscle, lung, liver, kidney, and blubber tissues from three mother-fetus pairs of this species stranded along the Pearl River Estuary, China. For PCBs, tetra-, penta-, hexa-, and hepta-chlorobenzene congeners were dominant in all the analyzed samples. Among them, hexachlorobenzene congeners showed the highest level in most dolphin mother-fetus tissue samples. The concentrations of PCBs and OCPs in adult females were higher in the detoxification organs (liver and kidneys) than in the muscles and lungs, whereas muscle tissues in fetuses generally exhibited higher PCBs and OCPs levels than the livers and kidneys. The most abundant PAHs in the four tissues were those with lower molecular weights, which were also the most water-soluble and bioavailable. Negative correlations between the octanol/water partition coefficients (log KOW) and the fetus/mother ratios for PCB congeners revealed that the transfer of PCBs may be determined by their lipid solubility. OCPs and PCBs with low molecular weights and low log KOW values would be more likely to accumulate in the dolphin liver, lung, kidney and muscle tissues. Furthermore, OCs with low molecular weights and low log KOW values were more concentrated in the fetal blubber, lung, and liver tissues than in their respective mothers. The ubiquitous existence of OCs in the mother-fetus pairs strongly suggested that these contaminants could pass through the placenta and partition in fetal tissue. The high transfer efficiency of PAHs and PCBs indicated that the placenta might not be an efficient barrier for these pollutants. PCBs levels in both mother and fetus dolphins could cause immunosuppression.


Subject(s)
Dolphins , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Bioaccumulation , China , Female , Hydrocarbons, Chlorinated/analysis , Placenta/chemistry , Polychlorinated Biphenyls/analysis , Pregnancy , Water Pollutants, Chemical/analysis
12.
Environ Pollut ; 270: 116057, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33221089

ABSTRACT

Microplastic pollution is a growing concern worldwide. Despite numerous studies showing the occurrence of microplastics in low-trophic level aquatic organisms, microplastic ingestion and contamination in cetaceans, especially those from Asian waters, has been rarely recorded. Here, we investigated stomach microplastic pollution in twelve Indo-Pacific humpback dolphins stranded along the Pearl River Estuary (PRE), China. We also compared microplastic abundances in dolphins stranded near populated urban areas (ZH, n = 6) with those stranded near rural areas (JM, n = 6). Microplastics were detected in all samples, with abundance ranging widely from 11 to 145 items individual-1 (mean ± SD, 53 ± 35.2). Major microplastics were polypropylene and polyethylene fibers, with the size mostly ranging from 1 to 5 mm and the dominant colors of white or transparent. Humpback dolphins from ZH (73 ± 36.8 items individual-1) exhibited a significantly higher average microplastic abundance than those from JM (33 ± 18.3 items individual-1, p < 0.05). In particular, the highest microplastic concentration was identified in the dolphin (SC-ZH01) stranded near the mouth of the Pearl River, whereas the dolphin (SC-JM04) collected at the rural site contained the lowest concentration of microplastics, suggesting the important influence of land-based human activities on the accumulation of microplastics in the PRE. The identification of varied microplastic polymers indicated their complex source scenarios. This study suggests that, as one of top predators in the potential microplastic food chains, this cetacean species could likely serve as an endpoint biomonitoring species of microplastic pollution in the PRE or other similar estuarine ecosystems. Our results highlight the need for more studies towards better understanding the potential impacts of microplastics on this endangered species.


Subject(s)
Dolphins , Water Pollutants, Chemical , Animals , China , Ecosystem , Environmental Monitoring , Estuaries , Humans , Microplastics , Plastics , Rivers , Water Pollutants, Chemical/analysis
13.
Environ Pollut ; 267: 115511, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32892017

ABSTRACT

There is little information about the residue levels and congener composition of organic contaminants (OCs) in cetaceans. In the present study, we investigated the polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in the blubber, blood, brain and testes of Indo-Pacific humpback dolphins (Sousa chinensis) stranded in the Pearl River Estuary (PRE), China. The lowest blubber/tissue partition coefficients were found for sum hexachlorocyclohexanes (ΣHCHs) and ΣPAHs, while the highest were in ΣPCBs and sum dichlorodiphenyltrichloroethanes (ΣDDTs), likely attributing to the octanol-water partition features. The low levels of OCs in brain and testes theoretically resulted from the blood-brain barrier, blood-testes barrier, contaminant molecule dimensions and unique lipid compositions in the brain and testes. Compared with other contaminants, the higher mean brain/blood and testes/blood partition coefficients found for mirex, heptachlor, dieldrin and endrin would increase the risks associated with exposure-related toxicity and the bioavailability of contaminants within these tissues. Observations also suggest that as lipid mobilizes from blubber, contaminants may redistribute, leading to elevated tissue (such as brain) concentrations. Therefore, dolphins with less blubber may be more susceptible to health risks. The Indo-Pacific humpback dolphins living in PRE are at great risk due to variety of OCs in indirect contact with non-target organisms, affecting the health of animals (toxic effects and accumulation). Our findings contribute to the knowledge of the potential effects of OCs exposure on developmental neurotoxicity and reproductive damage in marine mammals.


Subject(s)
Dolphins , Water Pollutants, Chemical , Animals , Bioaccumulation , Brain , China , Male , Testis/chemistry , Water Pollutants, Chemical/analysis
14.
PLoS One ; 15(1): e0228276, 2020.
Article in English | MEDLINE | ID: mdl-31999793

ABSTRACT

Evaluation of fish nutritional content information could provide essential guidance for seafood consumption and human health protection. This study investigated the lipid contents, fatty acid compositions, and nutritional qualities of 22 commercially important marine fish species from the Pearl River Estuary (PRE), South China Sea. All the analyzed species had a low to moderate lipid content (0.51-7.35% fat), with no significant differences in fatty acid profiles among fishes from different lipid categories (p > 0.05). Compared with previous studies from other regions, the examined fish species exhibited higher proportions of saturated fatty acids (SFAs, 39.1 ± 4.00%) and lower contents of polyunsaturated fatty acids (PUFAs, 21.6 ± 5.44%), presumably due to the shifted diet influence from increased diatoms and decreased dinoflagellate over the past decades in the PRE. This study further revealed that there was a significantly negative correlation between the trophic levels and levels of PUFAs in the examined species (Pearson's r = -0.42, p = 0.04), likely associated with their differed dietary composition. Considering the health benefit of PUFAs, a few marine fish in PRE with low levels of PUFAs might have no significant contribution to the cardiovascular disease prevention, although fish with different fatty acid profiles most likely contribute differently towards human health. Additional studies are needed in order to comprehensively analyze the nutritional status of fish species in the PRE.


Subject(s)
Fatty Acids/analysis , Fishes , Seafood/analysis , Animals , China , Estuaries , Rivers
15.
Aquat Toxicol ; 213: 105229, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31255889

ABSTRACT

Although the global use of the 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) has been prohibited, its persistence in the environment has caused long-lasting exposure on marine mammals. Our previous studies revealed exceedingly high residue levels of DDTs in Indo-Pacific humpback dolphins (Sousa chinensis) from the Pearl River Estuary region, China. However, the molecular mechanisms of p,p'-DDT toxicity on the dolphin are largely unknown. This study conducted the first cytotoxicity effect exploration of p,p'-DDT on the dolphin skin fibroblasts (ScSFs) to enhance the understanding of the cellular and molecular regulation impacts. ScSF cells were exposed to p,p'-DDT (28∼168 µM) for 24, 48 and 72 h. The exposure remarkably decreased viability of ScSF cells, possibly due to the synergetic effects of cell cycle arrest and apoptosis via DNA damage and mitochondria dysfunction. The DNA damage and mitochondria dysfunction were likely triggered by an increase of cellular reactive oxygen species (ROS), alteration in mitochondrial membrane potential, reduction in the cellular ATP levels, decreased expression of the genes CDK1, CDK4, cyclin B1, cyclin D1 and apoptosis regulator Bcl-2, release of cytochrome c, and activation of caspase-3, caspase-8 and caspase-9. Moreover, caspase inhibitor displayed protective activity against p,p'-DDT-induced apoptosis, indicating that caspases played a central role in p,p'-DDT-triggered apoptosis in the ScSF cells. We hypothesize apoptosis likely plays a minor role in cytocidal effects induced by p,p'-DDT exposure, but the mechanisms remain unclear. Overall, this research provides new evidence of the cytotoxic mechanisms underlying p,p'-DDT exposure on humpback dolphin skin cells, and suggests that p,p'-DDT contamination is one of key health concern issues for the protection of this marine mammal.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , DDT/toxicity , Dolphins/metabolism , Environmental Exposure , Fibroblasts/cytology , Mitochondria/metabolism , Skin/cytology , Animals , Caspases/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity
16.
Mar Pollut Bull ; 144: 181-188, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31179986

ABSTRACT

Twelve persistent organic pollutants (POPs) were measured in 11 tissue samples from a pregnant sperm whale stranded on the Huizhou coast of the South China Sea, China, in March 2017. POPs were found to be more concentrated in the irrigated tissues such as placenta, ovary, mammary gland, and liver than the less irrigated tissues such as epidermis. High POP levels detected in the placenta might result in abnormal hormone secretion in the placenta, which would affect the unborn offspring. We hypothesized that ovary is potentially vulnerable to the exposure of higher contaminant levels. The PAH concentrations were higher in the lung than in other tissues, which suggest that PAH levels in the lung were breath-dependent in the sperm whale. The concentrations of POPs except PAHs in the sperm whale blubber were lower than those in the same species in the Northern Hemisphere and were comparable to or lower than those in the same species in the Southern Hemisphere.


Subject(s)
Environmental Monitoring/methods , Placenta/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Sperm Whale/metabolism , Water Pollutants, Chemical/analysis , Adipose Tissue/chemistry , Animals , China , Female , Organ Specificity , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Pregnancy , Tissue Distribution , Water Pollutants, Chemical/pharmacokinetics
17.
Sci Total Environ ; 651(Pt 1): 1029-1037, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30266048

ABSTRACT

As long-lived apex predators in the Pearl River Estuary (PRE) of China, Indo-Pacific humpback dolphins (Sousa chinensis) are particularly vulnerable to anthropogenic impact and may undergo considerable ecological trait changes. The variability of traits, however, is often difficult to trace back in nature. Here, we analyzed stable isotope ratios of carbon and nitrogen in muscle samples of 88 S. chinensis stranded in the PRE from 2004 to 2016 to investigate the ecological changes occurring in the dolphins. Stable isotope analysis revealed the existence of two sub-aggregations of S. chinensis in the PRE. Generalized additive models showed significant decreasing trends in both carbon and nitrogen isotopic signatures over time, indicating the habitat changes and dietary shifts, possibly due to the influence of increased coastal developments and fishing activities in the PRE. Diet modeling suggests that the proportional contribution of higher trophic-level prey decreased in the S. chinensis diet over time, while increased consumption of lower trophic-level prey was observed. This shift was related to depletion of higher trophic-level prey caused by overfishing. Although S. chinensis could temporarily compensate for the lost energy supply through feeding plasticity (revealed by the negligible differences of isotope niche width among different stranding periods), long-term depletion in prey availability may cause long-lasting negative effects on this dolphin population. This study highlights the crucial relationships between fishery management and dolphin conservation, providing scientific evidence for the long-term protection of this threatened species in the PRE region.


Subject(s)
Conservation of Natural Resources/methods , Dolphins , Ecosystem , Estuaries , Animals , Diet/statistics & numerical data , Endangered Species , Isotopes
18.
Appl Environ Microbiol ; 85(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30578258

ABSTRACT

Many plants produce allelopathic chemicals, such as stilbenes, to inhibit pathogenic fungi. The degradation of allelopathic compounds by bacteria associated with the plants would limit their effectiveness, but little is known about the extent of biodegradation or the bacteria involved. Screening of tissues and rhizosphere of peanut (Arachis hypogaea) plants revealed substantial enrichment of bacteria able to grow on resveratrol and pterostilbene, the most common stilbenes produced by the plants. Investigation of the catabolic pathway in Sphingobium sp. strain JS1018, isolated from the rhizosphere, indicated that the initial cleavage of pterostilbene was catalyzed by a carotenoid cleavage oxygenase (CCO), which led to the transient accumulation of 4-hydroxybenzaldehyde and 3,5-dimethoxybenzaldehyde. 4-Hydroxybenzaldehyde was subsequently used for the growth of the isolate, while 3,5-dimethoxybenzaldehyde was further converted to a dead-end metabolite with a molecular weight of 414 (C24H31O6). The gene that encodes the initial oxygenase was identified in the genome of strain JS1018, and its function was confirmed by heterologous expression in Escherichia coli This study reveals the biodegradation pathway of pterostilbene by plant-associated bacteria. The prevalence of such bacteria in the rhizosphere and plant tissues suggests a potential role of bacterial interference in plant allelopathy.IMPORTANCE Pterostilbene, an analog of resveratrol, is a stilbene allelochemical produced by plants to inhibit microbial infection. As a potent antioxidant, pterostilbene acts more effectively than resveratrol as an antifungal agent. Bacterial degradation of this plant natural product would affect the allelopathic efficacy and fate of pterostilbene and thus its ecological role. This study explores the isolation and abundance of bacteria that degrade resveratrol and pterostilbene in peanut tissues and rhizosphere, the catabolic pathway for pterostilbene, and the molecular basis for the initial cleavage of pterostilbene. If plant allelopathy is an important process in agriculture and management of invasive plants, the ecological role of bacteria that degrade the allelopathic chemicals must be equally important.


Subject(s)
Allelopathy , Arachis/microbiology , Sphingomonadaceae/metabolism , Stilbenes/metabolism , Antibiosis , Antioxidants , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Rhizosphere , Soil Microbiology
19.
Aquat Toxicol ; 203: 179-186, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30153559

ABSTRACT

The increasing gas emissions and industrial wastewater discharge of anthropogenic hexavalent chromium (Cr(VI)) have been growing health concerns to the high trophic level marine mammals. Our previous studies showed that Indo-Pacific humpback dolphin (Sousa chinensis), stranded on the Pearl River Estuary region, contained exceedingly high levels of Cr in their skin-tissues. Unfortunately, the molecular toxic mechanisms on this mammal are absent, limiting our understanding of the eco-physiological impacts of Cr(VI) on dolphins. Thus, the cytotoxicity effects of Cr(VI) were analyzed on fibroblasts we isolated from the skin of S. chinensis (ScSF). This study showed that Cr(VI) markedly inhibited the viability of ScSF cells via induction of apoptosis accompanied by an increase in the production of reactive oxygen species and the population of G2/M arrest or apoptotic sub-G1 phase cells, up-regulation of p53, and activation of caspase-3. Further investigation on intracellular mechanisms indicated that Cr(VI) induced depletion of mitochondrial membrane potential in cells through regulating the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) proteins, resulting in decrease of the ATP level, cytochrome c release from mitochondria into cytosol, and the activation of caspase-9. Furthermore, antioxidants N-acetylcysteine and vitamin C displayed chemoprotective activity against Cr(VI) via suppression of p53 expression, indicating that the Cr(VI)-induced cell death may be mediated by oxidative stress. Overall, these results provide insights into the potential mechanisms underlying the cytotoxicity of Cr(VI) in Indo-Pacific humpback dolphin skin cells, offer experimental support for the proposed protective role of antioxidants in Cr(VI)-induced toxicity, and suggest that Cr(VI) contamination is one of key health concern issues for the protection of Indo-Pacific humpback dolphin.


Subject(s)
Apoptosis/drug effects , Chromium/toxicity , Dolphins/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Mitochondria/metabolism , Oxidative Stress/drug effects , Skin/cytology , Animals , Caspases/metabolism , Cell Cycle/drug effects , Cell Line , Cell Separation , Cytochromes c/metabolism , Fibroblasts/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity , bcl-2-Associated X Protein/metabolism
20.
ISME J ; 12(7): 1826-1835, 2018 06.
Article in English | MEDLINE | ID: mdl-29599522

ABSTRACT

Exposure to dietary sources of methylmercury (MeHg) is the focus of public health concerns with environmental mercury (Hg) contamination. MeHg is formed in anoxic environments by anaerobic microorganisms. This process has been studied mostly with single-species culture incubations, although the relevance of such studies to Hg(II)-methylation in situ is limited because microbial activities in the environment are critically modulated by interactions among microbial functional groups. Here we describe experiments in which Hg(II)-methylation was examined within the context of various microbial syntrophies. We show enhanced Hg(II)-methylation under conditions that established syntrophy by interspecies hydrogen and acetate transfer. Relative to activity of monocultures, interactions of Hg(II) methylating sulfate-reducing bacteria with a methanogen stimulated potential Hg(II)-methylation rates 2-fold to 9-fold, and with Syntrophobacter sp. 1.7-fold to 1.8-fold; those of a Hg(II) methylating Syntrophobacter sp. with a methanogen increased Hg(II)-methylation 2-fold. Under sulfate-depleted conditions, higher Hg(II)-methylation rates in the syntrophic incubations corresponded to higher free energy yields (ΔG°') than in the monocultures. Based on energetic considerations, we therefore propose that syntrophic microbial interactions are likely a major source of MeHg in sulfate- and iron-limited anoxic environments while in sulfate-replete environments, MeHg formation via sulfate reduction dominates.


Subject(s)
Deltaproteobacteria/metabolism , Mercury/metabolism , Deltaproteobacteria/genetics , Iron/metabolism , Methylation , Methylmercury Compounds/metabolism , Oxidation-Reduction , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...